Viewing entries in
New Project

Graf Research Awarded SBIR: "Optimal 3rd-Party IP Assessment"

Graf Research has been awarded an SBIR to produce one or more ASIC and FPGA hardware 3rd-Party IP (3PIP) assessment techniques, a set of technologies we collectively refer to as GR-3PIP. The techniques must accomplish the goal of establishing trust in the 3PIP under test, but we apply additional requirements. We require that the techniques (1) do not add significant cost to the core, (2) do not require extensive time to apply, and (3) do not require extensive verification or reverse engineering expertise to use.


Graf Research Awarded Contract to Interface OpTrust Tools

Graf Research has been awarded a contract to create interfaces between our OpTrust software, which creates game-theory-based prescriptions for optimal hardware Trojan detection, and a prime contractor's custom electronic design automation tools. 

Graf Research Awarded BAA: DPA Title III Trusted FPGAs

Graf Research has been awarded a Phase 0 BAA research project entitled DPA Title III Trusted FPGAs.  

Brief Program Summary: The Department of Defense (DoD) and Intelligence Community (IC) have identified Field Programmable Gate Arrays (FPGAs) as a critical enabling technology across a wide variety of present and future systems. Advanced, commercially available FPGAs do not meet DoD's requirements for Trusted Systems as they are manufactured in un-Trusted fabrication facilities, primarily off-shore, and are considered vulnerable to tampering and insertion of malicious software and/or hardware. This program seeks to improve the security posture and reduce the risk associated with FPGA technology by addressing security concerns in the design, development, fabrication and supply lifecycle of FPGA devices. The purpose of this study is to conduct an analysis and develop an approach to ensure the availability of advanced “Trusted” and space qualified re-programmable FPGAs technology to support DoD/IC applications including satellite and strategic missile systems. “Trust” is defined as assurance of the integrity and availability of a product wherein that product will reliably operate as intentionally designed and not contain any malicious hardware and/or software that will compromise the intended application; e.g., exfiltration of sensitive data, etc. Efforts envisioned during this Phase 0 study include: analysis of current FPGA manufacturing capabilities; analysis of future technical capabilities needed to meet the needs of the FPGA market (USG and commercial); creation of a draft technical plan and schedule to establish a Trusted source for space qualified FPGA devices, to include (non-binding) high-level cost projections, to establish quantitative “Trust” criteria for FPGAs; identification and analysis of the markets for FPGAs; and identification of business strategies to ensure long term success in the Trusted and space qualified FPGA market.

150 Wafer 2 - Santi - CC2.0 Attribution.jpg

Graf Research Awarded SBIR: "CP-SMARTS"

Graf Research has been awarded a Phase 1 SBIR entitled, "CP-SMARTS"  We will create a model of cyber physical security called CP-SMARTS: Cyber Physical Security for Mission-Aware ARmy Tactical Systems. CP-SMARTS will model not only the services required of Cyber Physical Systems (such as computation, communications, control, etc.) but also Mission Assurance requirements (definitions of Mission Essential Function and corresponding vulnerabilities and mitigations) and Information Assurance services (such as Confidentiality, Integrity, Availability, Authentication, etc.). A core element of our teams CPS philosophy one that will permeate our approach in modeling, model checking, and implementation is that we always keep deployment in mind. This means creating models and model checking methods that integrate well into the development environment of the user who will deploy the CPS. In so doing, we create technologies that not only work on the whiteboard and in simulation but also can be readily adopted by commercial and military CPS designers.


Research Award: Custom FPGA EDA Tools

Graf Research has been awarded funding to develop custom electronic design automation (EDA) software for Field Programmable Gate Arrays.  

Graf Research Awarded SBIR: "Optimal Strategies for Cloud-Based Trust Assessment"

Graf Research has been awarded a Phase 1 SBIR to research and develop optimal strategies for cloud-based trust assessment. We anticipate creating not only a novel cloud architecture that can facilitate the use of many of the DARPA-sponsored custom microelectronics trust software tools but also a unique, cloud-hosted software product OpTrust-C which will devise optimal strategies for the proper implementation of defensive measures.

150 SBIR Logo.png

Graf Research Awarded SBIR: "Irrefutable Tamper Logging"

Graf Research has been awarded a Phase 1 SBIR entitled "Irrefutable Tamper Logging."  On this project, we will create the GR-TLogger, a tamper logger that makes use of the key management capabilities of next-generation secure FPGAs to store tamper logs that are information rich, semi-permanent, and irrefutable.  

150 SBIR Logo.png